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A B S T R A C T

The number of extreme hot weather events have considerably increased in Hong Kong in the recent decades. The
complex urban context of Hong Kong leads to a significant intra-urban spatial variability in climate. Under such
circumstance, a spatial understanding of extreme hot weather condition is urgently needed for heat risk pre-
vention and public health actions. In this study, the extreme hot weather events of Hong Kong were quantified
and measured using two indicators – very hot day hours (VHDHs) and hot night hours (HNHs) which were
counted based on the summertime hourly-resolved air temperature data from a total of 40 weather stations
(WSs) from 2011 to 2015. Using the VHDHs and HNHs at the locations of the 40 WSs as the outcome variables,
land use regression (LUR) models are developed to achieve a spatial understanding of the extreme hot weather
conditions in Hong Kong. Land surface morphology was quantified as the predictor variables in LUR modelling.
A total of 167 predictor variables were considered in the model development process based on a stepwise
multiple linear regression (MLR). The performance of resultant LUR models was evaluated via cross validation.
VHDHs and HNHs were mapped at the community level for Hong Kong. The mapping results illustrate a sig-
nificant spatial variation in the extreme hot weather conditions of Hong Kong in both the daytime and nighttime,
which indicates that the spatial variation of land use configurations must be considered in the risk assessment
and corresponding public health management associated with the extreme hot weather.

1. Introduction

Climate change has become a major challenge to human health and
environmental sustainability (WMO, and WHO et al., 2015; IPCC,
2014). It has been foreseen that not only a warming trend is ahead, but
also extreme hot weather events would become more intense, more
frequent, and longer lasting (Meehl and Tebaldi, 2004; Field, 2012;
Stocker, 2014). Under such circumstance, heat-related health impact
has become an increasing concern for environmental health (Hajat and
Kosatky, 2010). With more than half of the global population now
living in cities, the United Nations adopted the New Urban Agenda in
2016 to set a new global standard and roadmap for sustainable urban
development, including the actions to address climate change and
strengthen the resilience of cities for reducing the risk and impact of
natural disasters (UN, 2016). In this regard, urbanized areas are of
emerging concern because the urban heat island (UHI) effect further
exacerbates the intensity and frequency of the heat wave and extreme

hot weather events (Oke, 1973; Oke, 1997; Tan et al., 2010; Li and Bou-
Zeid, 2013). Such situation makes cities, especially high-density and
compact large cities more vulnerable to extreme hot weather (Uejio
et al., 2011; WMO and WHO et al., 2015).

Urban climatic condition varies at different locations within the city
due to the spatial differences in land use configurations and in-
homogeneous land surface characteristics (Hart and Sailor, 2009). This
leads to a significant spatial variability in the extreme hot weather
condition. For example, an urbanized area with dense building clusters
absorbs more shortwave solar radiation during the daytime and releases
more longwave radiation during the nighttime. The deep street canyons
in urban areas trap the heat and consequently accumulate more heat
than rural areas (Arnfield, 2003). There are also other effects from the
spatially varied urban wind environment (Comrie, 2000) and anthro-
pogenic heat (Taha, 1997). As the results, urban areas would experience
more prolonged and intense heat wave events than rural areas under
similar background meteorological condition. Moreover, the intra-
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urban spatial variation in urban configuration/building environments
also leads to the intra-urban differences in the frequency, intensity, and
duration of the heat wave events. It has been indicated that people
living in intra-urban areas experience a more intense UHI (Clarke,
1972) and consequently at a higher heat-related life risk (Besancenot,
2002). However, many of current studies on the heat waves or extreme
hot weather events prediction, heat-related urban vulnerability and
health impacts are based solely on the temporal analysis, but lack of a
more comprehensive spatial understanding (Kaiser et al., 2007; Le
Tertre et al., 2006; Kyselý, 2002). In such cases, the evaluation of urban
vulnerability to extreme hot weather and the prevention strategies-
making would be biased due to “The Uncertain Geographic Context
Problem (UGCoP)” (Kwan, 2012). Kwan (2012) points out that the
findings on the influence of area-based attributes on the outcomes of
individual could be affected by the geographic delineation of contextual
units or neighbourhoods because of the spatial uncertainty. The effects
of UGCoP are even more significant in large cities with a complex
geographic context. Therefore, acquiring a detailed spatial under-
standing of the extreme hot weather events is essential to heat risk
prevention and public health actions (Buscail et al., 2012). In recent
years, relevant studies have been conducted for the spatial mapping of
heat-related risks in many large or megacities worldwide (Klein
Rosenthal et al., 2014; Wolf and McGregor, 2013; Lemonsu et al., 2015;
El-Zein and Tonmoy, 2015; Dugord et al., 2014). Significant spatial
variabilities of heat-related health impact were found in all the above
cases which indicates that heat-related health risks are considerably
varying from place to place because of the spatial heterogeneity of the
urban physical environment. The spatial uncertainty introduced by
taking the entire city as a whole in health burden assessment will lead
to large bias.

Hong Kong is a large city situated at the southeast side of the Pearl
River Delta (PRD) region of China (Fig. 2). It has a total area of about
1104 km2, owing to its mountainous topography with steep slopes over
20% of the total land area, most of the urban activities are concentrated
on built-up areas which take up about 24% of land (DEVB, 2017). The
population of more than seven million makes Hong Kong one of the
densest cities worldwide. Hong Kong has a typical sub-tropical mar-
itime climate based on the Köppen-Geiger Climate Classification (Peel
et al., 2007). It features hot and humid summer season (June to August)
with a seasonal averaged air temperature of 23.4 °C and a mean relative
humidity of approximately 81%. The average annual precipitation in
Hong Kong is about 2400mm (HKO, 2015).

Under the combined effect of global climate change and local ur-
banization, there is a long term increasing trend in the average tem-
perature in Hong Kong. Moreover, Hong Kong is experiencing an in-
creasing influence of extreme hot weather (Wang et al., 2016; Chan
et al., 2012; Wong et al., 2011). The prolonged period of extreme hot
weather has led to severe health issues in recent years (Ho et al., 2017;
Sham, 2015). Since an earlier study on investigating the weather-
mortality relationship (Yan, 2000) was conducted, there have been
several studies focusing on the correlation between the health burdens
and hot weather conditions (Goggins et al., 2012a, 2012b; Chan et al.,
2012). An evaluation indicator, Hong Kong Heat Index (HKHI), has
been developed by the Hong Kong Observatory (HKO) to cater for the
humid and hot summer condition in Hong Kong and adopted to en-
hance the heat stress information services in Hong Kong (Lee et al.,
2016). However, a limitation still exists, which is that the time-series
analysis does not fully consider spatial factors due to complex topo-
graphy and urban environment. It has been observed that the complex
urban land use and surface characteristics of Hong Kong lead to a sig-
nificant intra-urban spatial variability in climate (Shi et al., 2017).
Using a UHI intensity index (UHII), Goggins et al. (2012a, 2012b)
proved that the temperature-related mortality in those areas with a
high UHI intensity is higher than the areas with a low UHI intensity.
However, simply referencing the air temperature measured by the
nearest weather station (WS) still introduce large uncertainties and

biases into the heat-related health impact assessment. The above in-
dicates that a comprehensive spatial understanding of the extreme hot
weather events is urgently needed for urban heat disaster prevention
and public health management of Hong Kong. The urban topography is
also a major modifying factor of the spatial characteristic of urban
climate (Ketterer and Matzarakis, 2014). The complex land surface
morphology changes the atmospheric conditions at different spatial
scales (Raupach and Finnigan, 1997), which will consequently alter the
spatial pattern of air temperature (Draxler, 1986). The interaction be-
tween the mountainous topography and the urban boundary layer cli-
mate is complicated and vary at different places in Hong Kong (Tong
et al., 2005). Therefore, it is helpful to take the land surface mor-
phology into account, while investigating the spatial variability of the
extreme hot weather.

As a robust and widely used technique for the spatial mapping of
environmental exposure, land use regression (LUR) model has been
applied for investigating the spatial variability of the environmental
exposure of the air pollution (Ryan and LeMasters, 2007), heat (Shi
et al., 2018) and noise (Xie et al., 2011). Using onsite measured data, an
LUR model assesses the environmental exposure level (outcome vari-
ables) at unmeasured places by considering the land use composition,
population density and other urban configurations as the predictors.
The dependence on data makes the LUR a data-intensive method.
Taking the advantage of the extensive input dataset, LUR modelling
enables a fine-scale spatial estimation for unmeasured areas when
dealing with the geographic heterogeneity in large cities. It has been
found that LUR usually has a slightly better performance when com-
pared with other geostatistical methods for spatial assessment (Hoek
et al., 2008; Adam-Poupart et al., 2014).

In this paper, we investigate the spatial pattern of the summertime
extreme hot weather condition via LUR modelling in the complex
heterogeneous geographic context of Hong Kong. Besides all con-
ventionally used LUR predictors (Ryan and LeMasters, 2007), land
surface morphology was also quantified and adopted as the predictor
variables by this study to enhance the robustness of LUR models of the
extreme hot weather. Adopting the LUR modelling technique, we aim to
map the spatial pattern of the summertime extreme hot weather of
Hong Kong at the community level, using two indicators – annual
VHDHs and annual HNHs.

2. Materials and methods

In this study, the spatial variation in the summertime extreme hot
weather events (both daytime and nighttime) was investigated based on
a 5-year (2011–2015) hourly air temperature records from a total of 40
WSs maintained by the Hong Kong Observatory (HKO), the meteor-
ological authority in Hong Kong. A set of conventionally used LUR
predictor variables (include but not limited to land use, population
density, elevation) were extracted and generated using the land use and
urban configuration information. The heterogeneous land surface
morphology was quantified by a set of urban morphological/morpho-
metrical indexes. These indexes were further collated in the geo-
graphical information system (GIS) and processed into a series of geo-
graphic information layers. Data extracted from these layers at a set of
LUR buffer widths of the WSs’ locations were also incorporated into the
LUR models as predictor variables. Fig. 1 provides a flow diagram of the
method used in this study.

2.1. LUR outcome variables – quantifying the extreme hot weather
condition

The case city investigated in this study is Hong Kong. The weather
of Hong Kong has a considerable spatial variability due to the effects of
the mountainous topography, complex land surface and urban mor-
phology as well as the circulation of land - sea breeze (Chin, 1986; Yan,
2007; Mok et al., 2011). Under the circumstance of climate change and
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local urbanization, the rate of increase in annual average air tempera-
ture became faster in the recent decades in Hong Kong (Leung et al.,
2004; Wing-lui et al., 2010). To investigate and represent the most
recent weather condition of Hong Kong, a 5-year (2011–2015) hourly
air temperature (Ta, °C) dataset monitored by a total of 40 WSs (Fig. 2)
was acquired from the HKO as the basis of quantifying the extremely
hot weather conditions. The relevant metadata of the Ta datasets were
also collected, which are including but not limited to the geographic
locations, elevations and the neighbouring environment of each WS
(HKO, 2017b).

In this study, based on the HKO weather records, two extreme hot
weather condition indicators – VHDHs and HNHs were used as the
outcome variables of the LUR modelling. The extreme hot weather

events are commonly quantified by the intensity and duration
(Anderson and Bell, 2011). The two indicators used in this study are
developed based on the concept of the cumulative degree hour (simply
speaking, the amount of hot hours, hereafter referred HHs) adopted in a
previous research (Macnee and Tokai, 2016) and the general definition
of very hot days and hot nights adopted by HKO (2017a). The VHDHs
refers to the total number of hours greater than or equal to 33 °C during
the day (7:00–18:00 HKT). The HNHs refers to the total number of
hours greater than or equal to 28 °C at night (1:00 – 6:00 and 19:00 –
24:00 HKT). VHDHs and HNHs were calculated for the entire summer
of Hong Kong which define as the period from June to August (Sham,
2015). ( Fig. 3).

Fig. 1. The flow diagram of the method used in this present study.

Fig. 2. The study area and the 40 WSs of the HKO weather monitoring network in Hong Kong.
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2.2. LUR predictor variables

Five categories of data/information were collected and collated in
the GIS as the predictor variables for the development of the LUR model
of the VHDHs and HNHs: (1) land use information, (2) urban road
networks, (3) the spatial distribution of population, (4) natural topo-
graphy and landscapes, and (5) urban land surface morphology. A total
of ten different buffer widths, range from 100m (which is a spatial scale
of a small street block) to 3000m (represent the spatial scale of a dis-
trict) were used for generating predictor variable datasets. The data
processing of the first four categories of the predictor variables datasets
is explained in details in the Supplementary material of this article, as

they have been widely used in LUR modelling studies. Different from
most of the previous LUR studies, in the present study, the urban land
surface morphology is also quantified and included as the predictor
variables.

The spatial pattern of UHI is significantly affected by the near-sur-
face wind field, which is highly related to the land surface morphology.
The near-surface wind field is largely determined by the interactions
between the land surface and the atmosphere (Arnfield, 2003). In the
complex urban context of Hong Kong, the land surface morphology
varies at different places. Such spatial heterogeneity in land surface
morphology leads to a complex spatial variability in the air pressure
(Landsberg, 1981). For example, the hilly topography has a substantial

Fig. 3. The spatial pattern of the 5-year averaged annual VHDHs (upper) and HNHs (below) at the locations of WSs in Hong Kong. The flags in the figure represent
the WS locations. The colour scale represents the numbers of VHDHs and HNHs (unit: hour). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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influence in the air flow (Lai et al., 2014). Moreover, it has long been
emphasized that the building density and building arrangement sig-
nificantly affect the urban ventilation (Bottema, 1997; Franck et al.,
2013; Clarke, 1972). Therefore, it could be beneficial to analyse and
incorporate the land surface morphology as the predictors for in-
vestigating the spatial pattern of the extreme hot weather condition. By
means of GIS, the geomorphometrical analysis has been widely adopted
in the topoclimatological research (Böhner and Antonić, 2009). In this
present study, a set of land surface morphological indexes were adopted
as the predictor variables. Three building parameters - building volume
density (σBldg), sky view factor (ΨSVF), frontal area ratio (λF) were used
to depict the land surface morphology of built environment in the high-
density intraurban area. Rainfall is also an important meteorological
factor in mitigating heat waves (Wilby, 2007; Lam et al., 2012).
Windward-leeward index (WLI ), as a commonly-used geomorphome-
trical predictor of wind and precipitation (Bohner, 2006), was selected
to consider the topographical effect of the mountainous geomor-
phology. Above variables have been confirmed to be effective to re-
present the complex near-surface wind condition of Hong Kong (Shi
et al., 2017).

σBldg is a dimensionless ratio ranges from 0 to 1, which measures of
the relative building density of a site based on the overall urban density
level of an entire study area. Assume that there is a total of m sites in
the study area and there is a total of n buildings in each of these m sites,
the total building volume in site j (Vj) was calculated using Eq. (1),
where APi is the footprint area of the building i. hi is the building height
of the building i. The σBldg j, is defined as the ratio of Vj to the calculated
maximum building volume (Vmax) in the entire study area (Eq. (2)):

∑=
=

V A hj i

n
Pi i1 (1)

=
V

V
σBldg j

j

max
, (2)

ΨSVF , as a dimensionless ratio ranges from 0 to 1, describes the
openness of a near-surface point location to the sky hemisphere
(Watson and Johnson, 1987). It was commonly recognized and used as
a proxy of the incoming shortwave solar radiation and intraurban air
temperature differences (Svensson, 2004). In this study, a high-resolu-
tion (2m-resolution) digital terrain model (DTM) (Fig. 4) of Hong Kong
was created by combining the digital elevation data and the building
surveying data. The Ψ was calculated at each single point of the DTM
surface by following the calculation method by Dozier and Frew (1990).
The detailed geometry calculation has been mentioned in their article:
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λF is defined as the ratio of the total projected frontal area of all
buildings in a particular site to the total land area of the site. There are
two commonly-used methods of site zoning for the calculation of λF ,
which are the orthogonal grid method (OGM) (Ng et al., 2011) and
Thiessen polygon method (TPM) (Gál and Unger, 2009). In this study,
the TPM was used due to the irregular building arrangements. Assume
that there are a total of m sites in the entire study area, λFj is the frontal
area ratio of the site j in the study area. λFj can be calculated by using
Eq. (4), where n is the total number of buildings in the site j. The AFi is
the projected frontal area of the building i under a prescribed wind
direction (θ). Therefore, the total projected frontal area was calculated
as ∑ = Ai

n
Fi1 (the overlapped projection of the building frontal area be-

tween buildings was only calculated for once). Using the one-hour
mean wind direction records from the nearest weather station operated
by HKO, the 16-wind direction probability-weighted frontal area ratio
λF̅ can be then calculated via Eq. (5).
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WLI (ranges from 1, represent a fully windward position to the value of
-1, which is a leeward position) is a land surface morphological para-
meter that describes the spatial relationship between the land surface
angular slope and a prescribed wind direction (Böhner and Antonić,
2009). The WLI value at a particular location in the DTM surface data
under the condition of a prescribed wind direction (θ) was calculated
via Eq. (6), Eq. (7), and Eq. (8) based on the windward and leeward
horizon parameter function, which are Hφ and Hη respectively (Bohner,
2006; Huang, 2017). For a particular location in the DTM surface, ∆hφi
and ∆hηi are the horizontal distances in the windward and leeward
direction, while∆zφi and∆zηi are the vertical distances in the windward
and leeward direction respectively. More details can be found in Huang
(2017). The calculation was completed in the open source package
SAGA GIS (Olaya, 2004) in this study. Similar with the calculation of
the λF̅ , the 16-wind direction probability-weighted WLI (WLI̅ ) was
calculated for the entire area of the DTM of Hong Kong (Eq. (9)).
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2.3. LUR modelling

2.3.1. LUR buffering analysis
Except for the distance-based and point-based predictors, all the

other predictor variables were calculated using buffering analysis.
Buffering analysis is a widely-used geospatial analysis method in GIS,
which defines a zone around a location of interest using a specific
width. In this study, ten different LUR buffering widths (100m, 200m,
300m, 400m, 500m, 750m, 1000m, 1500m, 2000m, and 3000m).
As the results, a total of 167 candidate predictor variables were con-
sidered in this study. Table 1 shows a full list of all candidate predictor
variables involved in the LUR modelling process of this study.

2.3.2. Influential predictor variables - “ADDRESS” selection
The commonly adopted stepwise regression (Tabachnick and Fidell,

2001) was used for the LUR model development of this present study.
LUR modelling is essentially a multiple linear regression (MLR) process.
It has known that involving too many input predictors during the
multiple linear regression modelling leads to collinearity, which further
causes over-fitting problems and spurious resultant regression models
(Tu et al., 2005). Therefore, for this present study, it is beneficial to
perform a pre-screening of the complete predictor variable set to reduce
the number of the final input variables for the next-step LUR modelling.
Therefore, a practical and efficient variable screening method – the “A
Distance Decay REgression Selection Strategy (ADDRESS)” developed
by Su et al. (2009b) was adopted in this study. This method is essen-
tially a sensitivity test for each buffer-based predictor variable to test
the sensitivity of the variables to different buffers and identify the
critical buffer(s) for each variable. To perform the sensitivity test for a
particular predictor variable (VARi), first, a group of simple linear re-
gression models was developed using the ten buffer widths. The models
could be represented by two common equations:
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= +VHDHs α VAR βi ij test buffer j ij, (10)

= +HNHs α VAR βi ij test buffer j ij, (11)

where VHDHsi is the VHDHs at the location i. VARtest buffer j, is the testing
variable calculated within the buffer width j (refers to the Section 2.3.1
and Table 1 for the value of j). αij is the model slope of the VARtest buffer j, .
βij is the intercept of the model. The simple linear regression model was
developed for each of the ten values of j. For each testing variable, ten
simple linear regression models were developed (the resultant ten

models share the same model structure as indicated by Eq. (10)). A
distance-decay curve (a function of buffer widths) was then plotted
based on the ten corresponding Pearson correlation coefficients (R) for
each VARi buffer j, (Fig. 5). The critical buffer widths (mainly the peaks
and inflection points) of each buffer-based variable were identified by
adopting As the results, only variables at the critical buffers were kept
as the final input variables for next-step LUR modelling. The same pre-
screening procedure was repeated for another outcome variable – HNHs
(Eq. (11)).

Fig. 4. A 3D view (upper) and plan view (below) of a sample of the input high-resolution DTM data of Hong Kong.
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Table 1
A full list of all candidate predictor variables involved in the LUR statistical modelling process of this study.

Predictor Variables Variables’ Units Geospatial Analysis Methods Variables’ Code

Land Use Information (refer to Section 1 of the Supplementary material)
Total area within the buffer Residential land use m2 Buffera LU-RES

Commercial land use m2 Buffer LU-COM
Industrial land use m2 Buffer LU-IND
Government land use m2 Buffer LU-GOV
Open space land use m2 Buffer LU-OPN

Urban Road Network (refer to Section 2 of the Supplementary material)
Road network line density Trunk road/expressways km/km2 Buffer RD-TRU

Primary road km/km2 Buffer RD-PRI
Secondary road km/km2 Buffer RD-SEC
Tertiary road km/km2 Buffer RD-TER
Ordinary road km/km2 Buffer RD-ORD

Road area ratio (%) Standardized to [0–1] Buffer RD-RATIO
The Spatial Distribution of Population (refer to Section 3 of the Supplementary material)
Population density people per km2 Buffer POPULATION
Natural Topography and Landscapes (refer to Section 4 of the Supplementary material)
Geo-location (HK1980) Longitude m Point X

Latitude m Point Y
Elevation m Point Z

Distance to the nearest sources Waterbody and waterfront km Distance D-WATER
Artificial urban parks km Distance D-PARK
Natural forestry areas km Distance D-FOREST

Urban Land Surface Morphology (refer to Section 2.2)b

Building volume density Standardized to [0–1] Buffer σBldg

Sky view factor Standardized to [0–1] Buffer, Pointc ΨSVF
Frontal area ratio Dimensionless Buffer λF
Windward-leeward index Dimensionless Buffer WLI

a) A total of ten buffer widths were used: 100m,200m,300m,400m,500m,750m,1000m,1500m,2000m,3000m.
b) Variables depended on a prescribed wind direction were calculated based on the HKO meteorological records.
c) Originally, ΨSVF is developed for a point location. Therefore, besides the averaged ΨSVF in different buffer widths, point ΨSVF values at each the location of each

WS were defined as the variable within a 0m buffer and used as a predictor variable in this study as well.

Fig. 5. The 32 distance-decay curves of Pearson correlation coefficients between all buffer-based variables and VHDHs/HNHs.
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2.3.3. Stepwise regression LUR modelling and model cross validation
Stepwise regression technique has been widely applied for screening

predictor variables for the multivariate analyses (Jennrich, 1977;
Miller, 1984; Miller, 2002). In this present study, SAS JMP statistical
software was used to select predictor variables and optimize the LUR
models (Freund et al., 2003; Sall et al., 2012). The minimum Akaike
information criterion (AIC) is one of the most widely-used criteria in
stepwise MLR. In this study, it was used to determine the optimal LUR
models of the VHDHs and HNHs. The variance inflation factor (VIF) was
calculated for each predictor variables of the developed models. The
criteria of VIF< 2 was applied to exclude those predictor variables
with significant collinearity before constructing the final LUR models.
For each of the developed LUR models, the adjusted R2 (R2̅) values was
checked to evaluate the prediction performance. Leave-one-out cross
validation (LOOCV) was also performed to examine the resultant
models (both the RMSELOOCV and the RLOOCV

2 were calculated for each
resultant model). The structure of the resultant LUR models of the
VHDHs (Eq. (12)) and HNHs (Eq. (13)) can be illustrated as the fol-
lowing equation:

= + +… + +VHDHs α VAR α VAR α VAR β εi j j n njm i1 1 1 2 2 2 (12)

= + +… + +HNHs α VAR α VAR α VAR β εi j j n njm i1 1 1 2 2 2 (13)

where VHDHsi and HNHsi are the VHDHs and HNHs at the location i.
…VAR VAR VAR, , ,j j njm1 1 2 2 are the predictor variables calculated within

the buffer width …j j jm1, 2, , . …α α α, , , n1 2 are the corresponding corre-
lation coefficients of the predictors. βi is the model intercept. ε is the
model residual.

3. Results and discussions

3.1. Influential predictor variables at the critical buffers

As described in the methodology section, the “ADDRESS” method
(Su et al., 2009a) was adopted by this present study as the method of
the sensitivity test of buffer widths and the influential predictor vari-
able selection. As the results, a total of 32 distance-decay curves were
created to understand the correlation between the predictors and out-
come variables (Fig. 5). Based on these distance-decay curves, the cri-
tical buffer widths of each variable were identified (Table 2). There are
some common influential variables between VHDHs and HNHs. These

variables share the similar effects on the HHs between daytime and
nighttime. These variables include the land use-related variables LU-
RES, LU-IND, LU-OPN, the POPULATION, and the road network-related
variables RD-TRU, RD-PRI, RD-TER. Both LU-RES and LU-IND have a
positive correlation with the HHs, while the correlation between LU-
OPN and HHs is negative. LU-RES and LU-IND portray the spatial dis-
tribution of the building-related anthropogenic heat sources. High
emission intensity of the anthropogenic heat aggravates the HHs in both
daytime and nighttime. Similarly, the RD-TRU, RD-PRI, RD-TER are
also positively correlated with the HHs because of the vehicular heat
exhaust. The POPULATION has the same critical buffer width of 1500m
with LU-RES, which is as expected because the population census data
should be consistent with the layout of residential land use area in the
city. WLI , as a land surface morphological parameter, reflects the wind
availability. A larger WLI value at a location indicates a better venti-
lation (more air flows), which further implies a lower possibility of the
heat aggregation at that particular location. Therefore, the WLI has a
negative correlation with both the VHDHs and HNHs as expected.

Daytime-nighttime differences have been observed in some other
influential variables. For example, the land surface morphological
parameters σBldg and ΨSVF , and also land use variables LU-COM and LU-
GOV. These variables have the opposite correlation with the VHDHs
and HNHs. σBldg has a negative correlation with the VHDHs because
during the daytime, building clusters with a larger density blocks most
of the incoming solar radiation from the open sky, consequently reduce
the accumulation of the heat within the street (Yang et al., 2017).
However, a larger building volume also absorbs more shortwave solar
radiation during the daytime and thus stores more heat. During the
nighttime, the heat is released from the buildings in the form of long-
wave radiation. It is trapped by the dense building clusters and in-
creases the temperature of the ambient air volume (Nunez and Oke,
1977). The effect of ΨSVF is similar to the σBldg but works in an opposite
way because a larger ΨSVF allows more incoming solar radiation during
the daytime and could be helpful to the nighttime heat dissipation (Oke,
1981). LU-COM negatively correlates with VHDHs and positively cor-
relates with HNHs, which is possibly because that the built environment
of the commercial land use areas in Hong Kong usually have a very
large building volume (due to the extremely high land price and the
commercial value). The effect of LU-COM is more similar with the σBldg
due to the influence of the building volume. LU-GOV also has different

Table 2
The sensitivity test results of the critical buffer widths for each buffer-based variable and the selection of influential predictor variables for the stepwise regression
modelling input.

Outcome Variables VHDHs HNHs

Predictor Variables Critical Buffer (m) Correlation Used as the Modelling Input Critical Buffer (m) Correlation Used as the Modelling Input

LU-RES 1500 positive Y 1500 positive Y
LU-COM 500 negative Y 1500 positive Y
LU-IND 1000 positive Y 2000 positive Y
LU-GOV 500 negative Y 1500 positive Y
LU-OPN 200 negative Y 500 negative Y
RD-TRU 100 positive Y 2000 positive Y
RD-PRI 100 positive Y 1000 positive Y
RD-SEC n.a n.a N n.a n.a N
RD-TER 100 positive Y 750 positive Y
RD-ORD n.a n.a N 400 positive Y
RD-RATIO n.a n.a N 1500 positive Y
POPULATION 1500 positive Y 1500 positive Y
σBldg 100 negative Y 500 positive Y
ΨSVF 200 positive Y 400 negative Y
λF n.a n.a N 400 positive Y
WLI 100 negative Y 200 negative Y

Notes:
"n.a" : The correlation changes between positive and negative with the increase of buffer widths. The variable will not be used as the modelling input.
“Y” : The variable was used as the modelling input.
“N”: The variable was not used as the modelling input.
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correlations with VHDHs and HNHs during the daytime and nighttime.
Besides the LU-RES and POPULATION, all other variables have

different critical buffer widths between the VHDHs and HNHs. The
differences in the critical buffers of the urban land surface morpholo-
gical variables (σBldg, ΨSVF , and WLI ) could be explained by the differ-
ences in the atmosphere-land surface energy balance during the day-
time and nighttime (Oke, 1988). Although there are slight differences,
the critical buffers of σBldg, ΨSVF , and WLI all have a relatively small
spatial scale of 100–400m, which is basically at the urban neighbor-
hood scale. Such findings indicate that the effect of radiation and air
flow on the VHDHs and HNHs could only be effectively evaluated by
fine-scale investigations. For all other land use and road network-re-
lated variables, the critical buffers of the HNHs are larger than the
VHDHs, which indicates that the urban setting/configurations have a
larger sphere of influence on the HHs during the nighttime than the
daytime, which indicates a stronger influence. Some of the variables
have a correlation changes between positive and negative with the in-
crease of buffer widths. These variables were not used as the input data
of the stepwise regression modelling.

3.2. Resultant LUR models of VHDHs and HNHs

Using the influential predictor variables that identified in Section
3.1 (Table 2), the LUR models of the VHDHs and HNHs were developed
(Eq. 14 and Eq. 15 in Table 3 and Fig. 6). The two resultant LUR models
meet the requirements that: (1) the model and all model predictor
variables have a significant level of p-value smaller than 0.0001; (2) all
model predictor variables meet the criteria of VIF less than 2.

3.3. Spatial mapping of VHDHs and HNHs

On top of the resultant LUR models, the spatial mapping was per-
formed for the VHDHs and HNHs respectively. First, all predictor
variables included in the two resultant LUR models were calculated for
each location within the land area of Hong Kong in GIS. As the results,
seven geographical raster layers were generated. The spatial mapping
of VHDHs and HNHs were then performed based on the resultant LUR
models shown in Table 3. Considering the study area has a total area of

more than 1000 km2, a spatial resolution of 10m was applied for all the
mappings in this study to balance the mapping precision and the size of
the database files. For the urban context of Hong Kong, a spatial re-
solution of 10m would be fine enough for any further applications in
the investigation of the extreme weather conditions and the assessment
of heat-related health risks. The fine-scale resultant mapping could also
be used as the background weather reference/input setting of the
analysis of building energy consumption for the local sustainable
building design practice. Fig. 7(a) and (c) shows the 10m-resolution
mapping results of the VHDHs and HNHs. To support public health
preparedness, response and relief measures in the community level, the
mapping results were further aggregated at the community level based
on the zoning of SB/VC. Fig. 7(b) and (d) shows the final mapping
results of the VHDHs and HNHs at the community level of Hong Kong.

4. Discussions

4.1. Findings and contributions

This present study measures and estimates the spatial pattern of the
extreme hot weather condition of Hong Kong by using the VHDHs and
HNHs based on weather observation in 2011–2015 as the indicators.
Using LUR techniques, two statistical models of the VHDHs and HNHs
were developed. For both of the two resultant models, only the four
most influential and most contributing predictor variables were se-
lected from an extensive set of candidate predictor variables. The R2̅ of
the VHDHs model and the HNHs model are 0.712 and 0.801 respec-
tively. The two models also have a comparable RLOOCV

2 of 0.706 and
0.767 correspondingly, which confirms the robustness of the model
prediction performance.

The VHDHs model contains the predictor variables of LU_GOV500m

(negative correlation with the VHDHs), RD_EXP100m (positive correla-
tion), Z (negative correlation), and D_WATER (positive correlation).
The presence of the LU_GOV in the model is likely because government
and community buildings in GIC sites are generally low- to mid-rise
with better consideration of the surrounding environment. In Hong
Kong, governmental projects take more environmental measures, which
makes the government lands usually have a lower building density than
other types of lands. Therefore, LU-GOV to some extent reduce the
possibility of heat accumulation and has a negative correlation with the
VHDHs. This also indicates the effectiveness of the sustainable and
environmental development strategies developed by the Hong Kong
Building Department (BD) in recent years (BD, 2011a; b). These stra-
tegies are mandatory for most of the government development projects
and aim to mitigate the impacts on urban climate due to urbanization
and climate change. However, there are many different functions in
governmental land areas – government, institution and community
(GIC) sites of Hong Kong. Some are typical office buildings while the
others are the 24-h operating public facilities. For those nighttime
running facilities, the heat emission could be a possible explanation of
the positive correlation between LU-GOV and HNHs.

The positive correlation with RD_EXP within a small buffer width
implies the significant effect of vehicular heat exhaust within a short
range (which can be clearly observed in Fig. 8). As indicated by a
previous study in US (Hart and Sailor, 2009), road density is an im-
portant influencing factor of the local UHI intensity. It has been found
that the air temperature above the major roads is closely related to the
traffic-related anthropogenic activity. The consistency between the
findings between the previous study and the present study indicate that
the anthropogenic heat emission from the vehicular sector is still a
determinant of UHI in Hong Kong despite the different urban scenario.
The environmental benefits of the proximity to waterfront have been
confirmed under the urban context of Hong Kong (Ng and Ren, 2015).
The cooling effect of sea-breeze was revealed from the positive corre-
lation between VHDHs and D_WATER.

Different to the VHDHs, the HNHs were largely influenced by the

Table 3
The resultant LUR models of VHDHs and HNHs (all models and predictors meet
the criteria of p < .0001 and VIF<2).

Resultant LUR Model of VHDHs

Outcome Variable VHDHs
R2 0.742

R̅2 0.712

RMSELOOCV 23.86
Mean of Outcomes 52.59
p-value < .0001

RLOOCV
2 0.706

Model Structure

= − − + − + − +VHDHs e Z e D WATER( 1.470 4)*LU_GOV 8.898*RD_EXP 0.154* (1.531 2)* _ 58.851500m 100m

(14)
Resultant LUR Model of HNHs
Outcome Variable HNHs
R2 0.822

R̅2 0.801

RMSELOOCV 95.057
Mean of Outcomes 349.81
p-value < .0001

RLOOCV
2 0.767

Model Structure

= − − + − + +HNHs e Z λ( 5.110 4)*LU_OPN 75.716*RD_TER 0.144* 279.380* 449.704F m500m 750m 400

(15)
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heat dissipation rate during the nighttime. LU_OPN500m and the
building morphological parameter λF400m were proved to be the de-
termining factors of the urban cooling and ventilation (Ng and Ren,
2015; Shi et al., 2017). Such influence can be clearly observed in Fig. 8.
The resultant HNHs models prove that more open space and urban
morphological permeability are helpful to the mitigation of the extreme
hot weather conditions, especially in nighttime. The presence of the
RD_TER750m in the HNHs model is similar to the RD_EXP100m in the
VHDHs model. Both the VHDHs and HNHs have a negative correlation
with the elevation Z, which is as expected because of the negative
correlation between air temperature and altitude. It should be noticed
that significant correlations between VHDHs/HNHs and WLI have been
found, which confirms the importance of the wind in the heat dis-
sipation. However, WLI finally being excluded from the resultant HNHs

model because of its collinearity with the other surface morphological
variables.

The most important contribution of this present study is that it
translates all qualitative common understandings into a set of com-
prehensive quantitative knowledge. The spatial pattern of the extreme
hot weather events can be objectively and reasonably estimated not
only for each community but also at a much finer spatial scale for Hong
Kong at a higher level of robustness. As current ground-level weather
station network do not extensively covered urban areas due to the
limited land availability, there is a possible under-representation of
urban effect in the temperature data and corresponding indicators of
extreme hot weather (Szymanowski and Kryza, 2009). All above find-
ings will contribute a more comprehensive spatial understanding of
extreme hot weather conditions in a complex and heterogeneous

Fig. 6. The actual-by-predicted regression plot of the resultant LUR models of VHDHs (left) and HNHs (right). Each data point is corresponding to the validation of at
the location of a weather station.

Fig. 7. The 10m-resolution LUR mappings of the VHDHs (a) and HNHs (c) and the resultant spatial maps of the VHDHs (b) and HNHs (d) at the community level of
Hong Kong.
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geographic context of Hong Kong and form the scientific basis for future
analysis when higher spatial resolution monitoring data is available.
Such information will also be useful for identifying any sub-groups of
the population that are at risk or vulnerable to such risks (Michelozzi
et al., 2010) and improve the preparedness of extreme hot weather and
associated response measures as well as the future enhancement of heat
stress information services (WHO, 2008). The fine-scale spatial map-
ping can also be used as the background reference and help with better
urban planning design and the analysis of building energy consumption
for the local sustainable building design practices.

4.2. Limitations and future works

Although the meteorological records used in this present study is a
long-term hourly-resolved historical dataset of a period of 5 years, the
total amount of WSs might be still limited and could not represent every
type of the urban settings/configurations. The complicated hilly topo-
graphy, heterogeneous land surface and building / street-level effects in
Hong Kong make the local weather conditions vary significantly among
different places. It is possible that there are still some other types of
urban settings/configurations are not being investigated by the existing
WSs yet. In future studies, the model performance could be potentially
improved by setting up more short-term WSs to provide further in-
formation of the extreme hot weather condition in different places.
Currently, this study already provides a fine-scale spatial understanding
of the total amount of HHs during daytime and nighttime in summer for
Hong Kong from a long-term perspective. The follow-up studies will
focus on the mapping of the spatial pattern of the mean, minimum,
maximum and hourly air temperature to further investigate the spa-
tiotemporal variations of the extreme hot weather, which will allow a
more detailed understanding/estimation of the extreme heat events,
their potential impacts to various sectors of the society and to explore
applications in location-specific weather forecasts that better take into
consideration of the effects due to the urban settings/configurations.

5. Conclusion

Investigating the spatial pattern of extreme hot weather condition at
the community level is essential to the estimation of the heat-related
vulnerability and relevant potential impacts to different sectors of the
society. This study estimates the amount of summertime cumulative hot
hours at the community level for daytime and nighttime respectively in
Hong Kong. On the basis of the resultant LUR models (with the iden-
tifying the influential predictors), our findings have clearly showed that
there are significant spatial variations in the extreme hot weather
conditions in the territory and various land surface morphology in-
dicators were identified as influential factors to the observed spatial
variations.

The scholars, professionals and policy makers are increasingly be-
coming aware of the strong linkage between extreme hot weather and
urbanization (Stone et al., 2010; ENB, 2017). Those quantitative re-
lationships implied by the resultant models will provide useful refer-
ences for stakeholders and policy makers to formulate relevant mea-
sures to adapt and mitigate various negative impacts of the extreme hot
weather and improve the quality of living environment through in-
tegrating spatial climatic considerations in optimizing the urban plan-
ning and development, implementing environmental planning strate-
gies and sustainable building design practices, and enhancing heat
stress information services and related preparedness, response and re-
lief measures in the community level. This is particularly essential for
cities such as Hong Kong, where the large population and the compact
building environment makes it more susceptible to extreme hot weather
conditions (Ng et al., 2011). This study will help with the enhancement
of Hong Kong's resistance to future extreme weather against the back-
ground of climate change and continuous city development.
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